Resources

Citations

1. Li Z, Nair SK. Quorum sensing: How bacteria can coordinate activity and synchronize their response to external signals? Protein Science : A Publication of the Protein Society. [Online] Wiley-Blackwell; 2012;21(10): 1403. Available from: doi:10.1002/PRO.2132 [Accessed: 1st October 2021]

2. Ng W-L, Bassler BL. Bacterial Quorum-Sensing Network Architectures. Annual review of genetics. [Online] NIH Public Access; 2009;43: 197. Available from: doi:10.1146/ANNUREV-GENET-102108-134304 [Accessed: 1st October 2021]

3. Swofford CA, Dessel V, Forbes NS, Jain RK. Quorum-sensing Salmonella selectively trigger protein expression within tumors. Available from: doi:10.1073/pnas.1414558112 [Accessed: 1st October 2021]

4. Silva KPT, Chellamuthu P, Boedicker JQ. Quantifying the strength of quorum sensing crosstalk within microbial communities. PLoS Computational Biology. [Online] Public Library of Science; 2017;13(10). Available from: doi:10.1371/JOURNAL.PCBI.1005809 [Accessed: 1st October 2021]

5. Schauder S, Bassler BL. The languages of bacteria. Genes & Development. [Online] Cold Spring Harbor Laboratory Press; 2001;15(12): 1468–1480. Available from: doi:10.1101/GAD.899601 [Accessed: 1st October 2021]

6. Hudaiberdiev S, Choudhary KS, Vera Alvarez R, Gelencsér Z, Ligeti B, Lamba D, et al. Census of solo LuxR genes in prokaryotic genomes. Frontiers in Cellular and Infection Microbiology. [Online] Frontiers; 2015;0(MAR): 20. Available from: doi:10.3389/FCIMB.2015.00020

7. Shong J, Huang Y-M, Bystroff C, Collins CH. Directed Evolution of the Quorum-Sensing Regulator EsaR for Increased Signal Sensitivity. ACS Chemical Biology. [Online] American Chemical Society; 2013;8(4): 789–795. Available from: doi:10.1021/cb3006402

8. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. [Online] 2021;596(7873): 583–589. Available from: doi:10.1038/s41586-021-03819-2

9. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols. [Online] 2015/05/07. 2015;10(6): 845–858. Available from: doi:10.1038/nprot.2015.053

10. Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, et al. Template-based protein structure modeling using the RaptorX web server. Nature protocols. [Online] 2012;7(8): 1511–1522. Available from: doi:10.1038/nprot.2012.085

11. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic acids research. [Online] Oxford University Press; 2004;32(Web Server issue): W526–W531. Available from: doi:10.1093/nar/gkh468

12. Wang Y, Virtanen J, Xue Z, Zhang Y. I-TASSER-MR: automated molecular replacement for distant-homology proteins using iterative fragment assembly and progressive sequence truncation. Nucleic acids research. [Online] Oxford University Press; 2017;45(W1): W429–W434. Available from: doi:10.1093/nar/gkx349

13. Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research. [Online] Oxford University Press; 2011;39(Web Server issue): W270. Available from: doi:10.1093/NAR/GKR366 [Accessed: 30th September 2021]

14. Volkamer A, Kuhn D, Rippmann F, Rarey M. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics. [Online] Oxford Academic; 2012;28(15): 2074–2075. Available from: doi:10.1093/BIOINFORMATICS/BTS310 [Accessed: 30th September 2021]

15. Laskowski RA, Swindells MB. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. Journal of Chemical Information and Modeling. [Online] American Chemical Society; 2011;51(10): 2778–2786. Available from: doi:10.1021/CI200227U [Accessed: 30th September 2021]

16. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research. [Online] Oxford University Press; 2007;35(Database issue): D61. Available from: doi:10.1093/NAR/GKL842 [Accessed: 30th September 2021]

17. New England BioLabs. Tm Calculator. [Online] Available from: https://tmcalculator.neb.com/#!/main [Accessed: 30th August 2021]

18. Isalan M, Choo Y. Phage display of zinc fingers and other nucleic acid - binding motifs. In: Clackson Lowman, Henry B. T (ed.) Phage display : a practical approach. [Online] Oxford; New York: Oxford University Press; 2004. Available from: http://site.ebrary.com/id/10266414

19. Collins CH, Arnold FH, Leadbetter JR. Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Molecular microbiology. [Online] England; 2005;55(3): 712–723. Available from: doi:10.1111/j.1365-2958.2004.04437.x

Data Accessibility Statements

The Imperial iDEC team declares that all data can be accessed on the links provided above. We did not violate any GDPR.