## WEEK 9

## 5.26 Jianing Li

## Determination of engineering bacteria by HPLC

MA-1: pLB1s-hmaS MA-2: pLB1s-hmaS+pYB1a-aroG<sup>fbr</sup>-pheA<sup>fbr</sup> MA-3: pLB1s-hmaS-tktA-ppsA+ pYB1a-aroG<sup>fbr</sup>-pheA<sup>fbr</sup> LY-1: pYB1a-hmaS



Figure 1 HPLC results of engineered bacteria

MA-1+HMA was the result of adding a small amount of HMA standard in the last HPLC sample. It was confirmed that the unknown substance was not HMA and the peak of 9.2 was HMA. The peak time is about 0.2 min earlier than last time. The yield of MA and HMA was the highest in MA-2, which was the same as last time.

## 5.27 Sunyue Cai

## Screening

Our first screening system: Control group: 220  $\mu$ L LB + 0.1 % ampicillin +1 % WT bacterial solution; 200  $\mu$ L LB + 0.1 % ampicillin + 0.1 % 34 mg/mL chloramphenicol+10 % 0.6 g/L 4HB+1 % WT bacterial solution

Experimental group:  $200 \ \mu L \ LB + 0.1 \ \%$  ampicillin + 0.1 % 34 mg/mL chloramphenicol + 10 % 0.6 g/L HMA, mutant bacteria were selected.

| OD600                                   |                                                                      |                                                                |                                                                  |                                                                  |                                                                  |                                                                         |                                                                  |                                                                 |                                                                  |                                                                   |                                                                   |                                                                          |
|-----------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|
| A                                       | 0.0249                                                               | 0.0267                                                         | 1.1517                                                           | 0.8673                                                           | 0.8153                                                           | 0.8996                                                                  | 0.6266                                                           | 0.5333                                                          | 0.6019                                                           | 0.5803                                                            | 0.5791                                                            | 0.6016                                                                   |
| в                                       | 0.0247                                                               | 0.9702                                                         | 1.262                                                            | 0.9126                                                           | 0.9352                                                           | 0.9763                                                                  | 0.1113                                                           | 0.5303                                                          | 0.6146                                                           | 0.6025                                                            | 0.7593                                                            | 0.6124                                                                   |
| с                                       | 0.0247                                                               | 0.0659                                                         | 1.2068                                                           | 0.9094                                                           | 0.9684                                                           | 0.9906                                                                  | 0.5837                                                           | 0.2801                                                          | 0.6135                                                           | 0.6082                                                            | 0.5647                                                            | 0.6156                                                                   |
| D                                       | 0.9496                                                               | 0.9081                                                         | 0.9661                                                           | 0.8613                                                           | 0.9619                                                           | 0.9195                                                                  | 0.6261                                                           | 0.1135                                                          | 0.5249                                                           | 0.5987                                                            | 0.575                                                             | 0.5382                                                                   |
| E                                       | 1.0065                                                               | 0.9113                                                         | 0.9866                                                           | 0.9664                                                           | 0.9259                                                           | 0.8975                                                                  | 0.6184                                                           | 0.6111                                                          | 0.5946                                                           | 0.6559                                                            | 0.6597                                                            | 0.615                                                                    |
| F                                       | 1.0045                                                               | 1.0084                                                         | 0.9763                                                           | 0.9712                                                           | 0.9595                                                           | 0.9799                                                                  | 0.6278                                                           | 0.6356                                                          | 0.6124                                                           | 0.6277                                                            | 0.6626                                                            | 0.5888                                                                   |
| G                                       | 0.9518                                                               | 0.9699                                                         | 0.8634                                                           | 0.9559                                                           | 0.892                                                            | 0.8785                                                                  | 0.6624                                                           | 0.5847                                                          | 0.5575                                                           | 0.7163                                                            | 0.6416                                                            | 0.3265                                                                   |
| н                                       | 0.4914                                                               | 0.9277                                                         | 0.9712                                                           | 0.8652                                                           | 0.9599                                                           | 0.9705                                                                  | 0.608                                                            | 0.5705                                                          | 0.6264                                                           | 0.5972                                                            | 0.5611                                                            | 0.032                                                                    |
|                                         |                                                                      |                                                                |                                                                  |                                                                  |                                                                  |                                                                         |                                                                  |                                                                 |                                                                  |                                                                   |                                                                   |                                                                          |
| eGFP                                    | 1                                                                    | 2                                                              | 3                                                                | 4                                                                | 5                                                                | 6                                                                       | 7                                                                | 8                                                               | 9                                                                | 10                                                                | 11                                                                | 12                                                                       |
| eGFP<br>A                               | 1<br>9375                                                            | 2<br>9596                                                      | 3<br>46331                                                       | 4<br>15842                                                       | 5<br>15389                                                       | 6<br>14782                                                              | 7<br>22363                                                       | 8<br>12196                                                      | 9<br>13838                                                       | 10<br>13890                                                       | 11<br>24458                                                       | 12<br>15966                                                              |
| eGFP<br>A<br>B                          | 1<br>9375<br>9131                                                    | 2<br>9596<br>13749                                             | 3<br>46331<br>46277                                              | 4<br>15842<br>15368                                              | 5<br>15389<br>53010                                              | 6<br>14782<br>29622                                                     | 7<br>22363<br>10142                                              | 8<br>12196<br>12628                                             | 9<br>13838<br>18075                                              | 10<br>13890<br>27851                                              | 11<br>24458<br>14087                                              | 12<br>15966<br>27095                                                     |
| eGFP<br>A<br>B<br>C                     | 1<br>9375<br>9131<br>9245                                            | 2<br>9596<br>13749<br>9707                                     | 3<br>46331<br>46277<br>47331                                     | 4<br>15842<br>15368<br>19966                                     | 5<br>15389<br>53010<br>34732                                     | 6<br>14782<br>29622<br>18872                                            | 7<br>22363<br>10142<br>13824                                     | 8<br>12196<br>12628<br>10482                                    | 9<br>13838<br>18075<br>22492                                     | 10<br>13890<br>27851<br>18338                                     | 11<br>24458<br>14087<br>16910                                     | 12<br>15966<br>27095<br>21833                                            |
| eGFP<br>A<br>B<br>C<br>D                | 1<br>9375<br>9131<br>9245<br>15900                                   | 2<br>9596<br>13749<br>9707<br>14812                            | 3<br>46331<br>46277<br>47331<br>24486                            | 4<br>15842<br>15368<br>19966<br>14777                            | 5<br>15389<br>53010<br>34732<br>23672                            | 6<br>14782<br>29622<br>18872<br>15511                                   | 7<br>22363<br>10142<br>13824<br>16615                            | 8<br>12196<br>12628<br>10482<br>9655                            | 9<br>13838<br>18075<br>22492<br>11444                            | 10<br>13890<br>27851<br>18338<br>11426                            | 11<br>24458<br>14087<br>16910<br>12388                            | 12<br>15966<br>27095<br>21833<br>39319                                   |
| eGFP<br>A<br>B<br>C<br>D<br>E           | 1<br>9375<br>9131<br>9245<br>15900<br><b>35167</b>                   | 2<br>9596<br>13749<br>9707<br>14812<br>15411                   | 3<br>46331<br>46277<br>47331<br>24486<br>29856                   | 4<br>15842<br>15368<br>19966<br>14777<br>51709                   | 5<br>15389<br>53010<br>34732<br>23672<br>29683                   | 6<br>14782<br>29622<br>18872<br>15511<br>13396                          | 7<br>22363<br>10142<br>13824<br>16615<br>13887                   | 8<br>12196<br>12628<br>10482<br>9655<br>20996                   | 9<br>13838<br>18075<br>22492<br>11444<br>23514                   | 10<br>13890<br>27851<br>18338<br>11426<br>21451                   | 11<br>24458<br>14087<br>16910<br>12388<br>17836                   | 12<br>15966<br>27095<br>21833<br>39319<br>14556                          |
| eGFP<br>A<br>B<br>C<br>D<br>E<br>F      | 1<br>9375<br>9131<br>9245<br>15900<br><b>35167</b><br>22640          | 2<br>9596<br>13749<br>9707<br>14812<br>15411<br>40869          | 3<br>46331<br>46277<br>47331<br>24486<br>29856<br>23377          | 4<br>15842<br>15368<br>19966<br>14777<br>51709<br>20732          | 5<br>15389<br>53010<br>34732<br>23672<br>29683<br>24199          | 6<br>14782<br>29622<br>18872<br>15511<br>13396<br>46807                 | 7<br>22363<br>10142<br>13824<br>16615<br>13887<br>22244          | 8<br>12196<br>12628<br>10482<br>9655<br>20996<br>12267          | 9<br>13838<br>18075<br>22492<br>11444<br>23514<br>13338          | 10<br>13890<br>27851<br>18338<br>11426<br>21451<br>13790          | 11<br>24458<br>14087<br>16910<br>12388<br>17836<br>20534          | 12<br>15966<br>27095<br>21833<br><b>39319</b><br>14556<br>13412          |
| eGFP<br>A<br>B<br>C<br>D<br>E<br>F<br>G | 1<br>9375<br>9131<br>9245<br>15900<br><b>35167</b><br>22640<br>17213 | 2<br>9596<br>13749<br>9707<br>14812<br>15411<br>40869<br>23171 | 3<br>46331<br>46277<br>47331<br>24486<br>29856<br>23377<br>18587 | 4<br>15842<br>15368<br>19966<br>14777<br>51709<br>20732<br>23082 | 5<br>15389<br>53010<br>34732<br>23672<br>29683<br>24199<br>13505 | 6<br>14782<br>29622<br>18872<br>15511<br>13396<br><b>46807</b><br>13715 | 7<br>22363<br>10142<br>13824<br>16615<br>13887<br>22244<br>21080 | 8<br>12196<br>12628<br>10482<br>9655<br>20996<br>12267<br>19512 | 9<br>13838<br>18075<br>22492<br>11444<br>23514<br>13338<br>12881 | 10<br>13890<br>27851<br>18338<br>11426<br>21451<br>13790<br>24634 | 11<br>24458<br>14087<br>16910<br>12388<br>17836<br>20534<br>14407 | 12<br>15966<br>27095<br>21833<br><b>39319</b><br>14556<br>13412<br>11452 |

Figure 2 Raw OD<sub>600</sub> and Fluorescence values of initial screening

Since their OD values were generally higher, we speculated that the inhibition effect of 34 mg/mL chloramphenicol in liquid LB was poor.

## 5.28 Juan Luo

#### Liquid initial screening conditions

Since the inhibition effect of 34 mg/mL chloramphenicol in liquid LB was poor, the suitable concentration of chloramphenicol in liquid LB was explored by gradient chloramphenicol concentration.



Figure 3 Growth curves of control bacteria in different concentration without induction



Figure 4 Growth curves of control bacteria in different concentration with induction

# 5.29 Chao Chen



We did a re-screening verification, but none of the strains met our requirements.



Figure 6 The I0, IB and IA value of each mutant



Figure 7 The I0, IB and IA value of each mutant

# 5.30 Xiangxin Li

#### First screening of solid medium conditions

In order to determine the growth of BW bacteria in solid medium under normal conditions, the control bacteria were cultured in liquid LB in 37 °C shaking table for 10 h to OD=4 to ensure the consistent growth of the control bacteria each time. ampicillin resistant plate was coated with 200  $\mu$ L bacterial solution with different dilution ratios

of  $10^8$ ,  $10^7$ ,  $10^6$ ,  $10^5$ ,  $10^4$ 



Figure 8 Growth of control bacteria in different dilution ratios According to the results of the previous step, the plate with a dilution ratio of  $10^4$  was selected. The number of mono clones was about 120 under the dilution ratio.