# WEEK 15

## 7.7 Juan Luo

### **Engineering bacteria**

MA-4, MA-5 construction, *tyrB* knockout 1.MA-4, MA-5 construction

| 140-N<br>A A G E F L N M I T P Q Y L A I<br>A A P S N R L M I V G C Y R A S                                                                       | 202AT<br>DAINTAGAPHCFLS<br>IGNIGGTRRVAEQG<br>SANLVAPAGCQKRDT                                                                                           | A G A L V E A L<br>3056-K                                                                                                      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| GEGGEAGGTGAGTTTETEAACATGATEATEACECECACATATETEGETG<br>Beggeaggtgagttetecalatgateacecealatatetegetg<br>Beggeaggtgagtttetealatgateacecealatatetegetg | C <b>ATECCATTAATACCECCEGTECECCCCCCACTECTTCCTETCCE</b><br>SGATECCATTAATACCECCEGTECECCCCCACTECTTCCTETCCE<br>SGATECCATTAATACCECCEGTECECCCCCCTECTTCCTETCCE | TTETTAATGECGABABCAAGCCGGTGCGCTGGTTGAAGCG<br>TTETTAATGECGAAACAAGCCGGTGCGCTGGTTGAAGCG<br>TTETTAATGECGAAACAAGCCGGTGCGCTGGTTGAAGCG |  |  |

### Figure 1 Sequencing results of pYB1a-aroGfbr-pheAfbr-2

Complete the construction of MA-4 and MA-5, and transfer into BW competent cells according to the above system:

| Strains | Characteristics                                  |
|---------|--------------------------------------------------|
| MA-4    | pLB1s-hmaS+pYB1a-aroGfbr-pheAfbr-<br>2           |
| MA-5    | pLB1s-hmaS-tktA-ppsA+pYB1a-<br>aroGfbr-pheAfbr-2 |

Solution:

1. Pick out the colonies that have grown on the petri dish for re-screening, and wash the surface of the petri dish with LB containing chloramphenicol (20  $\mu$ g/mL) and HMA (0.6 g/L) after 20 hours of incubation. Collect the washing solution and incubate for 12 hours (one test tube per plate), then use a 96-well plate to measure the fluorescence value of each tube, and compare it with the fluorescence value induced by the negative control T1 original bacteria and the positive control T1 original bacteria plus 4HB to select the fluorescence The test tube with higher value, after dilution, plate it (50  $\mu$ g/mL ampicillin+20  $\mu$ g/mL chloramphenicol+0.6 g/L HMA), and re-select bacteria for verification.

2. Follow-up use the magnesium chloride filtered by the filter membrane, and pay attention to the coating method and time to ensure that the coating is dry.

Later, we will remedy the conversion coating:



Figure 2 The results of enzyme labeling after recollection of transformed coated test tubes

Then select the bacteria at positions A4 and B5 for fluorescence microscopy verification.



Figure 3 Fluorescence verification result of fluorescence microscope There is fluorescence in bacteria A4 and B5, but the result image is not clear and lacks contrast with the bright field image. Therefore, the fluorescence microscope will be reverified to determine the proportion of the fluorescent bacteria to the total bacteria. The next step is to determine Dilution multiples of the coated plate are used as a pavement.

Photocopying: A total of 58 single colonies obtained from the coating plate were obtained by photocopying before July 7 to enter the re-screening.

# 7.8 Fengqianrui Chen

#### **Re-screening**

A total of 524 colonies obtained from the transformation coating plate (A50+C20+0.6 g/LHMA) were re-screened;

Control group: 1)220  $\mu$ L LB+0.1% 50 mg/mL ampicillin+1% T1PobR<sup>WT</sup> bacterial solution; 2)200  $\mu$ L LB+0.1% 50 mg/mL ampicillin+10% 0.6 g/L 4HB+1% T1PobR<sup>WT</sup> bacterial solution 1)×3 2)×3

Experimental group: 200  $\mu L$  LB+0.1% 50 g/mL ampicillin+10% 0.6 g/L HMA+ plate to pick out a single colony

On July 8th, 58 bacteria were re-screened, and 8 bacteria with higher fluorescence value (yellow background) were selected for re-screening verification (A1B1C1 is a negative control, A2B2C2 is a positive control).

On July 9th, 120 bacteria were re-screened, and 8 bacteria with higher fluorescence value (yellow background) were selected for re-screening verification (A1B1C1 is a negative control, A2B2C2 is a positive control).

| <> | 1     | 2    | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|----|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| A  | 11024 | 9371 | 28506 | 25185 | 15464 | 18485 | 24736 | 22319 | 23551 | 17891 |
| В  | 11483 | 9698 | 29301 | 31145 | 16134 | 17552 | 24439 | 23240 | 23234 | 16102 |
| С  | 11830 | 8459 | 37995 | 15739 | 13669 | 22926 | 22543 | 19775 | 21249 |       |
| D  |       |      | 24369 | 35555 | 30457 | 22055 | 21912 | 27429 | 52343 |       |
| E  |       |      | 25027 | 22109 | 22858 | 24172 | 35509 | 23024 | 21699 |       |
| F  |       |      | 33046 | 23013 | 19854 | 24302 | 21541 | 24663 | 21647 |       |
| G  |       |      | 23627 | 5170  | 24447 | 24027 | 27072 | 22424 | 27676 |       |
| н  |       |      | 28602 | 25361 | 27956 | 36689 | 26148 | 22030 | 25093 |       |

Figure 4 Plate number: 0705 0706 F-1 fluorescence value of coated plate

The positive control value is low due to operational errors, so select other re-screened control data to process the data.

| $\diamond$ | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| A          | 22367 | 19893 | 13052 | 20859 | 29102 | 16415 | 18970 | 14826 | 18956 | 16480 | 18560 | 17396 |
| В          | 18457 | 26295 | 14714 | 52871 | 16093 | 15246 | 15778 | 15915 | 25378 | 18032 | 19334 | 19656 |
| С          | 19263 | 23252 | 16436 | 17257 | 14470 | 15343 | 15767 | 14300 | 19288 | 19190 | 16470 | 21333 |
| D          |       |       | 13997 | 19939 | 15448 | 14982 | 17187 | 12247 | 17540 | 16089 | 14913 | 18462 |
| E          |       |       | 14783 | 16275 | 15883 | 16832 | 17313 | 16771 | 14775 | 18308 | 16067 | 19728 |
| F          |       |       | 19615 | 15507 | 13213 | 13577 | 15289 | 14637 | 14217 | 19870 | 127   | 18318 |
| G          |       |       | 18519 | 18496 | 17456 | 16082 | 17040 | 17295 | 31740 | 16977 | 18164 | 21386 |
| н          |       |       | 18061 | 17680 | 15523 | 17799 | 18721 | 15599 | 15553 | 17015 | 16747 | 18024 |

Figure 5 Board number: 0707 coated board F-2 fluorescence value

| $\diamond$ | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|------------|-------|-------|-------|-------|-------|-------|-------|
| A          | 49136 | 46599 | 33400 | 31371 | 27369 | 30476 | 33670 |
| В          | 37503 | 50945 | 31556 | 30969 | 27842 | 30137 | 33963 |
| С          | 43198 | 44693 | 32059 | 31443 | 27346 | 30347 | 28851 |
| D          |       |       | 31463 | 29081 | 27573 | 27160 | 29395 |
| E          |       |       | 30458 | 31098 | 36569 | 31641 | 30066 |
| F          |       |       | 38315 | 30688 | 24954 | 28501 | 26887 |
| G          |       |       | 31430 | 29128 | 28245 | 38633 | 28046 |
| н          |       |       | 40784 | 35205 | 26871 | 29208 | 32420 |

Figure 6 Board number: 0707 coated board F-3 fluorescence value

166 bacteria were re-screened on July 10, of which 8 (framed in red) were re-screened on July 8 with higher fluorescence expression, and 11 bacteria with higher fluorescence value (yellow background) were selected for re-screening verification (A1B1C1 is the negative control, A2B2C2 is the positive control).

| $\diamond$ | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| A          | 26853 | 29304 | 33132 | 28822 | 26182 | 32437 | 30104 | 30308 | 32161 | 26823 | 39702 | 31383 |
| В          | 22336 | 33395 | 29253 | 28337 | 26072 | 28599 | 29155 | 28607 | 32347 | 29102 | 31403 | 29234 |
| С          | 26505 | 30276 | 29134 | 39728 | 23647 | 27128 | 34044 | 23897 | 26827 | 29853 | 28994 | 31510 |
| D          | 26241 | 26597 | 27786 | 28213 | 32949 | 26907 | 25014 | 26531 | 28257 | 27831 | 24882 | 26790 |
| E          | 26993 | 23674 | 31359 | 25599 | 21991 | 24955 | 23293 | 25159 | 24608 | 21927 | 26260 | 27888 |
| F          | 29528 | 25038 | 28398 | 29008 | 18368 | 25883 | 25884 | 23622 | 23308 | 28394 | 25951 | 26389 |
| G          | 27544 | 29687 | 30927 | 49565 | 26106 | 29878 | 23420 | 25234 | 23836 | 26353 | 36335 | 25982 |
| н          | 29025 | 25480 | 27966 | 29311 | 27748 | 28128 | 26366 | 22682 | 26188 | 26753 | 27986 | 29605 |

Figure 7 Plate number: 0708 coated plate F-4 fluorescence value

| <> | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    |
|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| A  | 20297 | 17952 | 22048 | 21463 | 18226 | 19584 | 22258 | 19335 | 21055 | 26503 | 19236 |
| В  | 16795 | 25087 | 19722 | 23452 | 21284 | 20031 | 21106 | 21179 | 17387 | 31686 | 21479 |
| С  | 17952 | 20942 | 19124 | 18984 | 19856 | 19230 | 20672 | 16574 | 35482 | 21503 | 19609 |
| D  | 26431 |       | 19958 | 23957 | 19426 | 17950 | 20039 | 17814 | 19217 | 22813 | 24619 |
| E  | 27394 |       | 20388 | 26124 | 18354 | 18793 | 20739 | 20461 | 19495 | 31765 |       |
| F  | 25403 | 24452 | 19282 | 16554 | 17885 | 17914 | 19153 | 16270 | 20008 | 23449 |       |
| G  | 32149 | 25926 | 19738 | 17751 | 18367 | 18958 | 20058 | 17326 | 18945 | 19802 |       |
| Н  | 50624 | 25642 | 20323 | 19385 | 17811 | 19370 | 22175 | 18535 | 20644 | 21106 |       |

Figure 8 Plate number: 0708 coated plate F-5 fluorescence value

## 7.12 Sunyue Cai

#### **Re-screening verification**

A total of 42 bacteria with relatively high fluorescence intensity obtained from the rescreening were verified by re-screening;

Use a microplate reader to verify whether the re-screened strains correspond to HMA, and at the same time exclude false positives caused by PobR protein off-target:

Control group (three groups in parallel)

220 µL LB+0.1% 50 µg/mL ampicillin

220  $\mu L$  LB+0.1% 50  $\mu g/mL$  ampicillin+1% T1PobR^{WT} bacterial solution

200  $\mu L$  LB+0.1% 50  $\mu g/mL$  ampicillin+10% 0.6 g/L 4HB+1% T1PobR^{WT} bacterial solution

Experimental group (three groups in parallel)

220 µL LB+0.1% 50 µg/mL ampicillin+1% BWPobR<sup>mut</sup> bacterial liquid

200 µL LB+0.1% 50 µg/mL ampicillin+10% 0.6 g/L 4HB+1%BWPobR<sup>mut</sup> bacterial liquid

200 µL LB+0.1% 50 µg/mL ampicillin+10% 0.6 g/L HMA+1%BWPobR<sup>mut</sup> bacterial liquid







Figure 10 0710 8 strains undergoing re-screening verification Part of the strains that have been re-screened and verified before are re-screened and verified (deep-well plate 14 h) (corresponding to data re-screening verification T9), and the results are compared with the first re-screening verification results as follows:



Figure 11 Verification of the first re-screening of 6 strains



Figure 12 Verification of the second re-screening of 6 strains Except for strain F-5 E4, the induction intensity of each strain in the two re-screening verifications was similar, indicating that the re-screening verification results were more repeatable and the results were more credible.



Figure 13 F7-D12 sequencing diagram

Then transfer to BW Competence for verification.

# 7.13 Hongda Fu

#### **Data collation**

Purpose: To compare the data performance of each strain in two re-screening methods

(fluorescence value screening and chloramphenicol screening) and two re-screening verification methods (deep-well plate and enzyme-labeled overnight), so as to verify the existing re-screening And re-screening to verify the accuracy of the method, and compare the 4HB induction intensity of each wild strain to determine the accuracy of each wild strain as a control strain.

Methods: Compare the HMA induction intensity (IA) of the same strain in fluorescence rescreening, chloramphenicol rescreening, enzyme-labeled overnight, and deep-well plate overnight, and compare the 4HB induction intensity (IB) of different wild strains. 1. The HMA induction intensity (IA) part of the experimental results comparing the data obtained by the same strain in re-screening bacteria, re-screening bacteria liquid, re-screening and verifying enzyme label overnight, and re-screening and verifying deep-well plate overnight are as follows:





The fluorescence induction intensity of different strains is uneven, indicating that the results obtained by several methods are quite different.

2. Comparing the 4HB induction intensity (IB) of different wild strains, the experimental results are as follows:





The fluorescence induction intensity of different strains is different. The 4HB induction intensity of BW bacteria is significantly higher than that of the other two strains. Therefore, DH5 $\alpha$  should be used as a control afterwards, but the use of BW bacteria as experimental strains in subsequent experiments should also be considered to obtain more obvious result.