HMA-Responsive Sensor-Driven adaptive laboratory

evolution (ALE)

9.22 Jiaqi Zhang

HMA-0 constructing experiment

This week, we double transformed pRB1s-hmas-aroG^{fbr2}-pheA^{fbr2} and pYB1a-pobR^{mut(P5-B7)}-eGFP-Cmr into BL21 and BW, respectively. And then we used chloramphenicol resistance gene for adaptive evolution of the strain in order to obtain a strain with high HMA yield.

Figure 1 growth condition of the transformation plate (cultured at 37°C for 12 h) Four single colonies were selected from the BL21 transformation plate for 8 h culture, and one strain was selected as the protobacterium and named HMA-0.

Reaction system (10µL)		Reaction p	Reaction procedure		
Arog-Gibson-Xhol-F	0.4µL/0.4µL	98°C	5min		
microbial		98°C	30s	٦	
Plb1s-hmas-arog pheAfbr2	1µL	55°C	30s		×30
(positive control)		72°C	1min30s		
Low-fidelity enzyme	5µL	72°C	10min		
ddw	3.2µL				
Figure 2 HMA	-0 PCR system	n (<i>aroG-ph</i>	neA)		
Reaction system (10µL)		Reaction	Reaction procedure		
pobR-mut-F/R	0.4µL/0.4µL	98°C	5min		
microbial/F5B7 plasmid、microbial (positive)	1µL	98°C	30s	٦	
		60°C	30s	-	×30
Low-fidelity enzyme	5µL	72°C	1min		
ddw	3.2µL	72℃	10min		

Figure 3 HMA-0 PCR system (*pobR*)

Figure 4 HMA-0 PCR electrophoresis results *aroG-pheA* and *pobR* bands are correct.

9.24 Peiyao Chang

Adaptive evolution experiment under chloramphenicol pressure

The HMA-0 successfully constructed was subjected to adaptive evolution experiment under chloramphenicol pressure.

medium	M9	
5xM9	8ml	
20%Glu	800ul	
1M MgSO ₄	80ul	
1M Cacl ₂	8ul	
20%ara	400µl	
DDW	31.2ml	

Figure 5 M9 liquid medium formulation

Figure 6 Gradient growth condition

The chloramphenicol concentrations in transfer culture were 5 g/L, 10 g/L, 15 g /L, 20 g/L, 30 g/L, 40 g/L, 50 g/L. After 12 h shake culture at 37°C (inoculation amount 2%), chloramphenicol (50 μ L/mL) was selected for subsequent compression experiment, named HMA-C50-1.

Cmr Concentration

Figure 8 OD₆₀₀ comparison condition of HMA-0 after 12 h VS 24 h

Figure 9 Gradient growth condition (12h)

The chloramphenicol concentrations in transfer culture of HMA-C50-1 were 60 g/L, 80 g/L, 100 g/L, 120 g/L, 140 g/L, 160 g/L. Figure 9 is the shake culture growth condition after 12 h (inoculation amount 1%).

Figure 10 Gradient growth condition (24 h)

The chloramphenicol concentrations in transfer culture of HMA-C50-1 were 60 g/L, 80 g/L, 100 g/L, 120 g/L, 140 g/L, 160 g/L. Figure 9 is the shake culture growth condition after 12 h (inoculation amount 1%).

Chloramphenicol (60 μ L/mL) was selected for subsequent experiments and was named HMA-C60-1.

HMA-C60-1 (1% inoculation) was transformed into 60 μ g/mL chloramphenicol M9 liquid medium and shaken at 37°C (Figure 12).

Figure 12 HMA-C60-1 growth condition under pressure (19 h)

9.26 Xin Xin

Adaptive evolution experiment under chloramphenicol pressure

We preserved the HMA-C60-1 which was cultured in 60 μ g/mL chloramphenicol M9 liquid medium for 24 h and named it HMA-C60-2. 65 μ g/mL chloramphenicol M9 liquid medium was prepared to transfer HMA-C60-2 (1% inoculation) and shock culture was conducted at 37 °C (Figure 13).

Figure 13 HMA-C60-2 growth condition under pressure (20 h)

We preserved the HMA-C60-2 which was cultured in 65 μ g/mL chloramphenicol M9 liquid medium for 20 h and named it HMA-C65-1. 65 μ g/mL chloramphenicol M9 liquid medium was prepared to transfer HMA-C65-1 (1% inoculation) and shock culture was conducted at 37 °C (Figure 14).

Figure 14 HMA-C65-1 growth condition under pressure (24 h)

9.27 Zhongyue Li

Adaptive evolution experiment under chloramphenicol pressure

We preserved the HMA-C65-1 which was cultured in 65 μ g/mL chloramphenicol M9 liquid medium for 24 h and named it HMA-C65-2.

 $65 \ \mu g/mL$ chloramphenicol M9 liquid medium was prepared to transfer HMA-C65-2 (1% inoculation) and shock culture was conducted at $37^{\circ}C$ (65 $\mu g/mL$ chloramphenicol, cultured for 11 h on the left).

70 μ g/mL chloramphenicol M9 liquid medium was prepared to transfer HMA-C65-2 (1% inoculation) and shock culture was conducted at 37°C (70 μ g/mL chloramphenicol, cultured for 10 h on the right) (Figure 15).

Figure 15 HMA-C65-2 growth condition under pressure

9.28 Yulong Zhang

Adaptive evolution experiment under chloramphenicol pressure

We preserved the HMA-C65-2 which was cultured in 70 μ g/mL chloramphenicol M9 liquid medium for 20 h and named it HMA-C70-1.

75 μ g/mL chloramphenicol M9 liquid medium was prepared to transfer HMA-C70-1 (1% inoculation) and shock culture was conducted at 37 °C.

We preserved the HMA-C70-1 which was cultured in 75 μ g/mL chloramphenicol M9 liquid medium for 20 h and named it HMA-C75-1.

80 μ g/mL chloramphenicol M9 liquid medium was prepared to transfer HMA-C75-1 (1% inoculation) and shock culture was conducted at 37 °C.

9.29 Peiyao Chang

Adaptive evolution experiment under chloramphenicol pressure

HMA-C75-1 (1% inoculation) was transformed into 80 μ g/mL chloramphenicol M9 liquid medium. After 12 h of shaking culture at 37°C, the bacterial condition was as follows.

Figure 16 HMA-C75-1 growth condition under pressure

We preserved the HMA-C75-1 which was cultured in 80 μ g/mL chloramphenicol M9 liquid medium for 12 h and named it HMA-C80-1.

10.2 Zhongyue Li

Adaptive evolution experiment under chloramphenicol pressure

HMA-0, HMA-50, HMA-60-1, HMA-60-2, HMA-65-1, HMA-65-2, HMA-70-1, HMA-75-1 and HMA-80-1 were resuscitated in M9 medium (inoculation amount 2%, no chloramphenicol was added). 12 h later, the growth curve was measured in the 96-well plates (adding different concentrations of chloramphenicol).

Figure 17 Growth curve

HMA-0, HMA-50, HMA-60-1, HMA-60-2, HMA-65-1, HMA-65-2, HMA-70-1, HMA-75-1 and HMA-80-1 were resuscitated in M9 medium (inoculation amount 2%, no chloramphenicol was added).

10.4 Xin Xin

Adaptive evolution experiment under chloramphenicol pressure

The above strains were transferred to M9 medium (inoculation amount 1%, without chloramphenicol), 1 mL of bacterial solution was taken after 12 h culture, and the supernatant was taken after centrifugation of 10000 g/L for 3 min. Samples were prepared and detected by HPLC.

Figure 18 HPLC detection result

According to HPLC results, compared with HMA-0 strain, the yield of HMA in HMA-C65-2 and later strain were significantly increased by more than three times.

HMA-0

HMA-C80-1

Figure 19 Bacteria color comparison

The comparison of HMA-0 and HMA-C80-1 bacteria showed that the latter was obviously green, which further indicated that the increase of product yield resulted in the enhancement of eGFP expression.